Geometric transformations

anslation by the vector (d,, d,,d,)":
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Geometric transformations

caling by the factors s, s, s,:
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Scaling matrix:  S(sz, sy, 5,) = 0 85’ s, 0
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Geometric transformations

otation around the z-axis by the angle 6:
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Rotation matrix: R,(0) = sinf cos¢ 0 0
0 0 1 O
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Geometric transformations

otation around the z-axis by the angle ¢:

[z (1 0 0 0\ (=)
Y’ 0 cosf —sinf O Y

0 sinf coséb

\i) \ 0 0 0 (1)) \i)

(1 0 00\
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Rotation matrix:  R.;(0) =




Geometric transformations

otation around the y-axis by the angle 6:

/a:/\ (cose 0 sind 0\ (3;\
y | 0 1 0 0| [
4 B —sinf) 0 cosf O 2
vt/ L o 0 0 1) \1/)
( cos@ 0 sinf 0\
Rotation matrix: R, (0) = Q 10 0
—sinf 0 cosf O
\ 0 0 0 1/
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Geometric transformations

otation around an arbitrary axis by the angle 0.

* Shift the rotation by a translation such that it
passed through the origin.

* Rotation around the z-axis, such that the rotation
axis Is mapped to the y/z-plane.

* Rotation around the z-axis, such that the rotation
axis iIs mapped to the z-axis.

* Rotation by the angle 6 around the z-axis.
* Reverse the three first transformations.

T(—dy,—dy,,—d,)oR,(—0,)oR,(—0;)oR.(0)oR,(0,)oR.(0,)oT(d,d,,d,)
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Geometric transformations

s already in the case of 2D graphics, the composition
of transformations can be implemented by matrix
multiplication.

The last line for all above mentioned matrices is
(0,0,0,1). Matrix multiplication preserves this property.

In the two-dimensional case there is exactly one
transformation matrix that maps three noncollinear
points to three other noncollinear points.

In the three-dimensional case there exists exactly one
transformation matrix that maps four noncoplanar
points to four other noncoplanar points.
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Geometric transformations

iven four noncoplanar points p, p2, ps. p4 € R* and
the target points p’, p;, p5, p}, the transformation matrix
IS obtained by solving the system of linear equations

p; = M - p; (1=1,2,3,4)

(in homogeneous coordinates) where
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Geometric transformations

(abcd\
v — e f g h
v 7 ko
\0 0 0 1)/

In this sense, transformations can be interpreted as
changing from one coordinate system to another.
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